
Abstract. Miller's papers on classical S-matrix theory
had a profound in¯uence on the understanding of
inelastic atom±molecule collisions. This perspective
discusses the historical background, the content, some
applications, and new developments.
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When I joined the department for Molecular Interac-
tions at the Max-Planck-Institut fuÈ r StroÈ mungsforsc-
hung as an undergraduate student in 1972, the head of
that department, Professor J.P. Toennies, gave me a
couple of papers [1, 2] to read, which had great in¯uence
on many researchers in the ®eld of molecular dynamics;
they certainly shaped my own scienti®c thinking for
many years to come.

Around 1970 there was a ¯ourishing interest in state-
resolved scattering cross sections and at several locations
crossed molecular beams apparatus were under con-
struction; our institute was one of them. Although it was
clear from the beginning that quantum mechanics is the
ultimate tool for describing collisions between atoms
and molecules, exact quantum mechanical calculations
for realistic systems, especially for chemical reactions,
were essentially impossible in those times. On the other
hand, purely classical mechanics, i.e., trajectory calcu-
lations a la Karplus, Porter, and Sharma [3] (see the
perspective by Schatz in this issue) were believed to be
not fully adequate, since important quantum e�ects such
as tunneling, zero-point energy, and interferences are ±
by de®nition ± not incorporated. Thus, a theory was
sought which amalgamates the simplicity of classical
calculations with the essential concepts of quantum
mechanics.

In the ®rst of the papers mentioned above Miller
established a general semiclassical theory for inelastic

molecular scattering. This approach was the natural
extension of the celebrated semiclassical theory for
elastic atom-atom scattering [4] which had been devel-
oped about a decade before Miller's papers (see the
perspective given by Miller in this issue). The basic
concept of the semiclassical theory is the incorporation
of quantities solely derived from the solution of the
classical (Newton's or Hamilton's) equations of motion
into the quantum mechanical principle of superposition
of probability amplitudes (as opposed to the summation
of probabilities). Building the theory on the superposi-
tion principle guarantees that the quantum mechanical
e�ects neglected in classical mechanics are at least
qualitatively included. Solving the classical equations of
motion for a system with several degrees of freedom, in
order to extract the necessary ingredients such as action
integrals or generalized de¯ection functions, even three
decades ago was not a problem and thus the classical
S-matrix theory, as the semiclassical theory was termed,
was considered to be a promising alternative to exact
quantum mechanical methods for calculating state-
resolved inelastic integral and di�erential cross sections
for atom±molecule collisions. One must remember that
around that time the ®rst exact (close coupling) calcu-
lations had just appeared in the literature [5]. For a more
comprehensive historical survey of semiclassical meth-
ods for bound states and scattering problems see the
review articles by Miller [6, 7] or the monograph of
Child [8].

While the ®rst of the two Miller papers was a bit
formal, especially for a young undergraduate student
making his ®rst steps into science, in the second paper it
was demonstrated by means of a simple collinear
A+BC�n1� !A+BC�n2� scattering system how the
general theory must be applied [2]. Within the simplest
version of classical S-matrix theory the probability for
making a vibrational transition from an initial state n1

to a ®nal state n2 is given by

Pn2;n1 � p1 � p2 � 2�p1p2�1=2 sin�D/� ; �1�

Perspective

Perspective on ``Semiclassical theory of atom±diatom collisions:
path integrals and the classical S matrix''

Miller WH (1970) J Chem Phys 53: 1949±1959

Reinhard Schinke

Max-Planck-Institut fuÈ r StroÈ mungsforschung, Bunsenstrasse 10, D-37073 GoÈ ttingen, Germany

Received: 26 February 1999 / Accepted: 5 April 1999 / Published online: 21 June 1999

Theor Chem Acc (2000) 103:297±299
DOI 10.1007/s002149900026



where the

pi � 2p
dn2��q1�
d�q1

���� ����ÿ1
�q1��qi

1

�2�

are purely classical probabilities and D/ is the di�erence
between the action integrals along the two di�erent
classical trajectories, speci®ed by the initial phase angles
�q11 and �q21, which correspond to the particular n1 ! n2

transition. The particular form of Eq. (1) is only valid if
there are two trajectories that ± in the classical sense ±
contribute. The interference term sin�D/� is the mani-
festation of the quantum mechanical superposition
principle (addition of probability amplitudes rather than
probabilities).

The connection between the classical trajectories and
the quantum transition is established by the classical
excitation function n2��q1�, an example of which is de-
picted in Fig. 1a. n2��q1� is the ®nal classical vibrational
quantum number (not necessarily an integer) as a func-
tion of the initial phase of the oscillator. It is calculated
by running ± for a particular collision energy ± trajec-
tories with di�erent initial phase angles �q1. The partic-
ular trajectories which contribute to the probabilities in
Eq. (1) are found using the equation

n2 � n2��q1� ; �3�
where n2 � 0; 1; . . . . In the particular case shown in Fig.
1 exactly two trajectories contribute when n is smaller
than the maximum of the excitation function (classically
allowed case).

The interference of these di�erent roots to Eq. (3)
leads to the pronounced oscillations of the quantum
mechanical probability shown in Fig. 1b. In contrast to
the quantum mechanical curve the classical probability
is a smooth function of n2. If n2 is larger than the maxi-
mum of the excitation function there are no real-valued
trajectories and the transition is classically forbidden.

An extension of the semiclassical theory into the non-
classical regime is possible by analytical continuation
and complex-valued trajectories [9±11]. If n2 is close to
nmax
2 ��q1� the classical probabilities become singular and
the ``primitive'' semiclassical theory breaks down; how-
ever, this failure can be corrected on a more sophisti-
cated (uniform) level of the semiclassical theory. Thus,
the probability has three di�erent regimes: the classically
allowed region, in which the probability shows quantum
interference oscillations; the classically forbidden region,
in which the probability decays exponentially to zero;
between these two regimes the probability shows a
pronounced rainbowlike maximum.

About a decade later, the general predictions con-
cerning the shape of transition probabilities, that natu-
rally emerge from the semiclassical theory, were
beautifully con®rmed in rotational-state-resolved di�er-
ential-scattering cross sections. These cross sections ex-
hibit a classically forbidden region, a dominant rainbow
maximum (rotational rainbow), and interference oscil-
lations in the classically allowed region [12]. An ex-
perimental example, highlighting the supernumerary
rotational rainbows, is shown in Fig. 2 for the
He + Na2 collision system together with the results of
theoretical calculations employing an accurate potential-
energy surface [13]. The rotational rainbow occurs at
very small angles in this particular example and is not
observable. However, the quite regular supernumerary
oscillations, which are so nicely predicted by Eq. (1), are
clearly observable; these oscillations are distinctively
di�erent from the rainbow oscillations observed in
elastic collisions [4]. The semiclassical picture has also
been found extremely helpful in understanding ®nal
product state distributions following the fragmentation

Fig. 1. a Vibrational excitation function n2��q1� as a function of
the initial phase angle of the BC oscillator �q1. Redrawn from Fig. 2
of Ref. [2]. b Comparison between the quantum mechanical (solid
line) and the classical (dashed line) transition probabilities.
Redrawn from Fig. 1 of Ref. [2]

Fig. 2. Supernumerary rotational rainbow oscillations for the
j � 0! 2 transition in He+Na2 collisions. The dots are the
experimental data and the solid lines are the results of quantum
mechanical scattering calculations. Reproduced, with permission of
the American Institute of Physics, from Ref. [13]
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of polyatomic molecules, provided the dissociation is
fast and direct [14]. Another, very ®ne application of
semiclassical S-matrix theory has been provided by Rost
in the context of electron±atom scattering, particularly
the ionization of atomic hydrogen [15]. This application
is especially fascinating because electrons are not con-
sidered to be well described by classical mechanics.

In the early 1970s, the semiclassical approach to
inelastic scattering was mainly applied to the collinear
A+BC model system de®ned by Secrest and Johnson
[5], which included only two degrees of freedom. The
emphasis at that time was mainly in testing the various
implementations of the classical S-matrix theory.
Although the agreement with the exact quantum me-
chanical results was excellent, applications of the semi-
classical theory to more realistic and therefore
necessarily more complex collision systems was sparse.
The reasons why the classical S-matrix theory did not
become a major tool for numerical calculations for re-
alistic systems are ± in my opinion ± twofold. First, if
more than two degrees of freedom are involved, ®nding
the correct trajectories which lead to the desired quan-
tum transition is ``thorny'' (root search problem). Sec-
ond, beginning in the mid-1970s better and better
numerical algorithms for solving the SchroÈ dinger equa-
tion (the time-independent or the time-dependent one)
were developed, so that today it is possible to treat any
triatomic molecular system in an essentially exact
quantum mechanical manner. Of course, the unforseen
advances in computer technology also had an enormous
impact on exact scattering calculations.

Applications of exact quantum mechanics to systems
with four atoms involved is still a major numerical
burden, not to mention application to even bigger sys-
tems, and so approximate methods based on the solution
of the classical equations of motion are nevertheless
highly desired. In this context the semiclassical initial
value representation (IVR), a precursor of which had
already been derived in Miller's 1970 paper [2], may turn
out to become a signi®cant tool in molecular dynamics
(see Ref. [16] for a comprehensive list of recent refer-
ences). In the IVR approach the quantum mechanical
S-matrix elements are approximated by a (multi-di-
mensional) integral over the initial classical phase space
and the integrand contains only ingredients from clas-

sical trajectories. In this way, the awkward root
searching procedure is avoided. The price to be paid is
that instead of a few trajectories many have to be cal-
culated. Recent applications are very promising and
show that quantum mechanical e�ects such as interfer-
ences, for example, are reproduced perfectly [16].

In summary, Miller's 1970 papers [1, 2] on classical S-
matrix theory had a profound in¯uence on the theory of
molecular collisions and related topics such as photo-
dissociation. Following earlier work on elastic scatter-
ing, they demonstrated how the results of classical
mechanics can be built into a quantum mechanical
framework of inelastic collisions. In my view the greatest
asset of the classical S-matrix theory is its interpretative
power. The general shape of transition probabilities or
collisional cross sections can be easily understood in
terms of classical trajectories and their quantum me-
chanical interference. Exact quantum mechanical pro-
grams are like ``black boxes'' and the results are often
di�cult to understand without the help of classical me-
chanics or semiclassical analyses. The new developments
such as the IVR are likely to become major tools for
systems consisting of many atoms.

References

1. Miller WH (1970) J Chem Phys 53: 1949
2. Miller WH (1970) J Chem Phys 53: 3578
3. Karplus M, Porter RN, Sharma RD (1965) J Chem Phys 43:

3259
4. Ford KW, Wheeler JA (1959) Ann Phys (NY) 7: 259
5. Secrest D, Johnson BR (1966) J Chem Phys 45: 4556
6. Miller WH (1974) Adv Chem Phys 25: 69
7. Miller WH (1975) Adv Chem Phys 30: 77
8. Child MS (1991) Semiclassical mechanics with molecular

applications. Clarendon, Oxford
9. Miller WH (1970) Chem Phys Lett 7: 431
10. Miller WH, George TF (1972) J Chem Phys 56: 5668
11. Stine JR, Marcus RA (1972) Chem Phys Lett 15: 536
12. Korsch J, Schinke R (1980) J Chem Phys 73: 1222
13. Gottwald E, Bergmann K, Schinke R (1987) J Chem Phys 86:

2685
14. Schinke R (1993) Photodissociation Dynamics. Cambridge

University Press, Cambridge
15. Rost J-M (1998) Phys Rep 297: 271
16. Skinner DE, Miller WH (1999) Chem Phys Lett 300: 20

299


